3193 POWER HiTESTER

C
Printer is optional unit

DC/0.5Hz to 1 MHz broad-band POWER HiTESTER measures up to 6 systems simultaneously.

Wide Spectrum Power Meter for Comprehensive Device Assessment

3194

3194 MOTOR / HARMONIC HiTESTER provides analysis of high-order harmonics up to the 3000 th order. Additionally, with the optional 9603-01 EXTERNAL SIGNAL INPUT UNIT installed, the HiTESTER can directly measure torque and rotation speed, an essential feature for evaluating the performance of inverter motors. This makes it easy to construct measurement systems

The 3193 POWER HiTESTER is a multi-function power meter for use with single phase power lines to 3 -phase, 4 -wire circuits. Accommodating up to 6 units, it is not only capable of measuring up to 6 single phase systems, but can simultaneously measure the input and output of a 3-phase inverter and provide effective power measurements. Additionally, it supports harmonic analysis and flicker measurement (optional), features which are essential for overall device assessment. Standard features include a GP-IB/RS-232C interface and 3.5-inch floppy disk drive, making it easy to feed data to a personal computer for processing and analysis. This unit is ideal for those requiring greater efficiency in electrical device assessment.

Complete with functions that answer all your power measurement needs.

Features

Wide range of measurement functions

Capable of measuring voltage, current, active/reactive /apparent power, power factor, phase, frequency, and current, and of integrating power according to polarity, the $\mathbf{3 1 9 3}$ (or 3194) also provides wave peak and efficiency measurements that are essential to device assessment.

- Can Measure Motor Output

With the optional 9603 EXTERNAL SIGNAL INPUT UNIT, the HiTESTER can take analog input in from torque and revolution measurements and use that information to calculate motor output.

- Measurement for Minute Stand-by Power also Available (by special-order product) The 9600 and 9601 input units have 10 -times improved current sensitivity, and currents starting from the 20.000 mA range can be measured. (Please ask for further information.)

High Visibility Color LCD

Featuring a wide viewing angle, the color LCD displays a variety of items simultaneously, making it ideal for quickly grasping power usage on the system being measured. Expanded display is possible for any four selected items.

Harmonic and Flicker Analysis
Harmonic and flicker analysis are possible when using the optional 9605 HARMONIC / FLICKER MEASUREMENTS UNIT(3193 only).

High Basic Accuracy of $\pm 0.2 \%$

Measurements of even greater precision can be obtained using the optional 9600 to 9602 input unit, which provides a basic accuracy of $\pm 0.1 \%$ rdg,$\pm 0.1 \%$ f.s. (With the 9602 , the accuracy of the clamp-on sensor is a factor affecting total accuracy during power measurement.)

A Variety of Interfaces for Differing Needs

\star Connecting to a PC
The 3.5 inch floppy disk drive and RS-232C / GP-IB interface, provided as standard features, make it possible to connect the power meter directly to a PC, allowing efficient measurement, management and analysis of data.
\star Connecting to a Recorder
 With 8 selectable D/A outputs and voltage, current and power analog/ monitor output (current and voltage only) as standard features, the HiTESTER allows recording of changes and transient fluctuations in waveforms using a recording unit.

\star Connecting to a Printer

Data can be output to the optional 9604 PRINTER UNIT.

Print type : Thermal line dot printing Paper width : 72 mm
printing of items measured, hard copy output of displayed screens, printout of meter settings,
printout of various times (such as interval time, timer time, and realtime control time). Printouts are performed either automatically, upon input of an external control signal, or synchronized with an integrator.

Integration According to Polarity
Positive, negative, and total current and power can be integrated simultaneously for all channels. This makes it possible to grasp the income and outflow of power at a glance.

Provides Analog and D/A output.

Analog (voltage, current, and effective power) and D/A outputs (any selected eight items) are output as a 5 V range full scale value. (Except for the 1000 V range), 100 ms response time can be obtained by using the FAST setting.

3 Types of Averaging Function

Select from time average, moving average and exponential average.

- 3ch Frequency Measurement Function

With the frequency ranges, LPF and HPF can be used in combination, allowing measurement of fundamental waveforms and carrier waveforms of inverters.

- Efficiency Calculation Function

Three efficiency calculations can be obtained simultaneously from measured voltage values.

Peak Measurements Function
Voltage and current wave peaks can be measured. The Peak Hold function can be used to find peak values and effective maximums for motor rush current waves.

Wave Monitor Output

With the voltage and current ranges, waveforms are output as 1 V full scale values, allowing waveforms to be monitored using devices such as recorders or synchroscopes.

3 Types of Built-in Low Pass Filters

Selectable cutoff frequencies $(500 / 5 \mathrm{k} / 300 \mathrm{kHz})$ allow extraction of the frequency component of fundamental inverter waveforms and provide data compatibility with previous instruments.

- Choose from Three Types of Calculation Algorithms

Three selectable algorithms are provided for calculating apparent power and reactive power, providing compatibility with previous devices

Choose from a variety of input units according to application
Three types of input units are available, including the 9602 clamp input meter, which can be used with current levels exceeding 50A under live circuit conditions, as well as the 9600 and 9601 which accept direct input of up to $1000 \mathrm{~V} / 50 \mathrm{~A}$.

- 9600 . . . DC/0.5Hz to 1 MHz wide band
- 9601 . . 5Hz to 100 kHz , for AC only
- 9602 • • DC/0.5Hz to 200 kHz clamp input

A variety of clamp on sensors are available, including models 9270 to 9272 for AC only, and models 9277 to 9279 for AC/DC.

1ch	2ch	3ch	4ch	5ch	6ch
$1 \emptyset 2 \mathrm{~W}$					
$1 \varnothing 3 \mathrm{~W} / 3 \emptyset 3 \mathrm{~W}$		$1 \emptyset 2 \mathrm{~W}$			
$1 \varnothing 3 \mathrm{~W} / 3$ ¢ 3 W		$1 \emptyset 3 \mathrm{~W} / 3 \emptyset 3 \mathrm{~W}$		$1 \emptyset 2 \mathrm{~W}$	$1 \emptyset 2 \mathrm{~W}$
$1 \varnothing 3 \mathrm{~W} / 3$ ¢ 3 W		$1 ø 3 \mathrm{~W} / 3 ø 3 \mathrm{~W}$		$1 \varnothing 3 \mathrm{~W} / 3 \phi 3 \mathrm{~W}$	
$3 \mathrm{~V} 3 \mathrm{~A}(3 \emptyset 3 \mathrm{~W}) / 3 \emptyset 4 \mathrm{~W}$			$1 \emptyset 2 \mathrm{~W}$	$1 \emptyset 2 \mathrm{~W}$	$1 \emptyset 2 \mathrm{~W}$
$3 \mathrm{~V} 3 \mathrm{~A}(3 \emptyset 3 \mathrm{~W}) / 3 \emptyset 4 \mathrm{~W}$			$1 \emptyset 3 \mathrm{~W}$	$3 \emptyset 3 \mathrm{~W}$	$1 \emptyset 2 \mathrm{~W}$
$3 \mathrm{~V} 3 \mathrm{~A}(3 \emptyset 3 \mathrm{~W}) / 3 \emptyset 4 \mathrm{~W}$				($\emptyset 3 \mathrm{~W}$)	4W

Simultaneous Measurement of Multiple Systems

 Since all units are mutually isolated, the primary and secondary sides of devices or disparate power lines can be measured simultaneously. Simultaneous measurement of single phase 6 wire or 3 phase 2 wire systems which previously required multiple units, can now be handled with one. What's more, measurements of all devices can be taken at the same instant, providing a powerful tool for integrated, all-round device assessment.

Effect of common mode voltage

Can measure all items at same point in time

The Power Analysis Station

Applications of 3193

Example of Application With Power Converter

Measure mixed AC and DC components with a single unit.

Example of Assessment Trial of EV (Electric Vehicle)

3ch
U/I/P
Separate charge / generation integration $\pm \mathrm{Wh}$ 1,2 ch
3 phase after DC/AC, AC U/I/P/Wh

■ 3194 Performs Comprehensive Evaluation of 3-phase Inverter Motors

Capable of measuring carrier frequencies on the secondary side of inverters. Also allows analysis to be synchronized with motor rotation.
Torque, rotation speed, and motor power can be measured by inputting analog torque and r / m signals to the 9603-01 EXTERNAL INPUT UNIT. Further, an input terminal is provided for use with a strain gauge-type torque sensor.

	9603-01 EXTERNAL INPUT UNIT	
	Input channels	: 2 channels
	Ch A	: Strain gauge sensor or DC voltage input (BNC)
	Ch B	: Pulse or DC voltage input (BNC)
	Strain gauge input specifications (dedicated connector)	
	Applicable converter : Strain gauge type converter (bridge resistance 350 - 1.5k Ω)	
	Measurement range :	$: 1 \mathrm{mV} / \mathrm{V} / 1.5 \mathrm{mV} / \mathrm{V} / 2 \mathrm{mV} / \mathrm{V}$
	Measurement accuracy	$: \pm 0.1 \%$ rdg. $\pm 0.065 \%$ f.s.
CHA	Connector : PRC03-23A10-7F (manufactured by Tajimi)	
	DC voltage input specifications (ch A / ch B common BNC connector)	
	Input resistance	: $200 \mathrm{k} \Omega \pm 5 \%$ (differential)
	Measurement range	$: \pm 1.0000 / \pm 5.0000 / \pm 10.000 \mathrm{~V}$
	Measurement accuracy	$: \pm 0.1 \%$ rdg. $\pm 0.1 \%$ f.s. ($23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, not higher than 80% rh)
	Pulse input specificat	ions (ch B, BNC connector)
CHB \triangle	Frequency measurement	$: 1 \mathrm{~Hz}$ to 100 kHz
	Common specification	
	Analog output	$\pm 5 \mathrm{~V}$ f.s. (Output accuracy : Measurement accuracy $\pm 0.2 \%$ f.s)
$\text { (ㄴ) } c \epsilon$		

3194 Specifications (Harmonic Waveform Analysis Function)
Measurement lines : Single-phase 2- and 3-wire, three-phase 3- and 4-wire
No. of channels : Up to 3 channels from channels 1 to 6
Measurement range :Fundamental frequency: 10 Hz to 4.5 kHz
Harmonic Waveform Analysis Functions
Measurement method :PLL or external clock
A/D resolution : 12 bits
Windowing type : Rectangular tiling (with gap between windows)
Crest factor :Up to 2.5 (voltage, current)
PLL source : U, I or external synchronization
Ext. synchronization : Input to a rear panel control terminal on the 3194 main unit
signal
Measurement items : RMS voltage, RMS current, effective power value,
frequency, \pm U peak, \pm p peak
:Harmonic level, percentage and phase angle of harmonic
wave, Total harmonic distortion (THD-F, THD-R)
Sceen displays :List, graph, vector and waveform displays
Wiring conversion : $\Delta-\mathrm{Y}$ voltage conversion, $\mathrm{Y}-\Delta$ voltage conversion
$\begin{array}{l:l}\text { Sort function } & \text { : Sorts according to decreasing order of analysis, displa } \\ \text { Averaging function } & \text { : Index average with time constant of } 1.5 \mathrm{sec}\end{array}$
Frequency ranges

	Fundamental Frequency	Sampling speed (Hz)	Window Width	Analysis Order
PLL $\begin{array}{c}\text { Synchronization } \\ \text { Ranges }\end{array}$	$10-17.5 \mathrm{~Hz}$	$\mathrm{f} \times 8192$	1 waveform	3000 (10kHz or less)
	$17.5-35 \mathrm{~Hz}$	$\mathrm{f} \times 8192$	1 waveform	3000 (10kHz or less)
	$35-70 \mathrm{~Hz}$	$\mathrm{f} \times 8192$	1 waveform	3000 (100kHz or less)
	$70-140 \mathrm{~Hz}$	$\mathrm{f} \times 4096$	2 waveforms	1500 (100kHz or less)
	$140-280 \mathrm{~Hz}$	f $\times 2048$	4 waveforms	800 (100kHz or less)
	$280-560 \mathrm{~Hz}$	$\mathrm{f} \times 1024$	8 waveforms	400 (100kHz or less)
	$560-1120 \mathrm{~Hz}$	$\mathrm{f} \times 512$	16 waveforms	200 (100kHz or less)
	$1120-2240 \mathrm{~Hz}$	f $\times 256$	32 waveforms	100 (100kHz or less)
	$2240-4500 \mathrm{~Hz}$	$\mathrm{f} \times 128$	64 waveforms	50 (100kHz or less)
Fixed clock	----	$\begin{gathered} 50 \times 8192 \\ \quad \text { Fixed } \end{gathered}$	2 waveforms	3000 (100kHz or less)

[^0]
■ Applications of 3193

Support up to Harmonic / Flicker analysis when using the optional 9605 HARMONIC / FLICKER MEASUREMENTS UNIT

Graph Display of Harmonics
Voltage, current and power can be analyzed and displayed by bargraphs of harmonic amplitude, content and phase angle.Voltage, current and power can be displayed simultaneously for a single channel, or a single parameter can be displayed simultaneously for each of three channels.

Vector Display of Harmonics
The harmonic vector display shows the voltage, current and phase angle for each harmonic, making clear the voltagecurrent phase relationship.

Flicker Measurement Display
Displays data during measurement in real-time. Display can also be switched to D measurement and "Pst" value.

List Display of Harmonics The harmonic list display shows the amplitude, proportion, phase angle and distortion for each harmonic of voltage, current and power. Displaying only proportion, or two parameters simul taneously, such as amplitude and phase angle, is selectable.

Waveform Display

The waveform display shows one cycle of the voltage and current waveforms. RMS and peak values can be displayed along with voltage and current waveforms, or voltage and current waveforms for up to three channels can be displayed at the same time

Monitor Display

The relative "d" voltage change $\Delta \mathrm{V} / \mathrm{V}$ and the instantaneous flicker value " $\mathrm{S}(\mathrm{t})$ " can be displayed in a time series, so past variations are clearly displayed.

9605 Specifications (optional)

Installation : Installs in the 3193 main unit
Measurement lines: Single-phase 2- and 3-wire, three-phase 4-wire
No. of channels: Up to 3 channels within channels 1 to 6 , depending on 3193 wiring mode
Output functions: Floppy disk, RS-232C, GP-IB, printer

- Harmonic Waveform Analysis Functions (IEC61000-3-2*1)

Measurement range : Fundamental frequency: 1 to 440 Hz PLL system (5 to 440 Hz), external clock system (1 to 5 Hz)
Orders analyzed : Up to 50th harmonic (with 1 to 250 Hz fundamental)
Window width : 16 cycles (for 40 to 70 Hz fundamental)
Windowing type : Rectangular tiling (no gap between or overlap of windows)
Amount of data analyzed: 512 points (for 40 to 70 Hz fundamental)
Crest factor : Up to 4 (current), and up to 3 (voltage)
Measurement items : Harmonic level, percentage and phase angle of each order of harmonic wave for each of voltage, current and power. Total up to 50th harmonic (of 40 to 70 Hz fundamental) for voltage, current and power. Total harmonic distortion for voltage and current (THD-F and THD-R)
Measurement of voltage, current, active power, peak voltage and peak current values of the fundamental
*1. The 9605 does not support limit values, so pass/fail decisions based on limit values, classification of special waveforms (A to D) and 2.5 -minute measurement function for measuring transient harmonic currents are not supported.

Update rate : Every 1 window (except during communications with other devices)
Screen displays : List, graph, vector and waveform
Accuracy*3 Harmonic levels; at 45 to 66 Hz Voltage/current: $\pm 0.5 \%$ rdg. $\pm 0.05 \%$ f.s. Active power: $\pm 1.0 \%$ rdg. $\pm 0.1 \%$ f.s.
For 45 to $66-\mathrm{Hz}$ fundamental, effective input is 0.1 to 110% of range, total error of harmonic current when PLL is locked is 5% of the limit value or within 0.2% of the rated current of the device under test (no limitation with 9602).

Flicker Measurement Function (IEC61000-3-3*2)
Measurement range : Fundamental frequency; 45 to 66 Hz , PLL synchronization system Analysis items : dc (relative constant voltage change), d max (max. relative constant voltage change), $\mathrm{d}(\mathrm{t}) 200 \mathrm{~ms}$ (relative voltage change per time), $\mathrm{P} 0.1 /$ $\mathrm{Pls} / \mathrm{P} 3 \mathrm{~s} / \mathrm{P} 10 \mathrm{~s}$ and 30 s (cumulative probability), Pst (short-term flicker value), Plt (long-term flicker value)
Screen displays : Measured value, CPF, Pst list, Monitor
Accuracy*3 : Within $\pm 5 \%$ rdg. of limit on the limit curve line $($ Pst $=1$) specified for voltage fluctuation in IEC60868-0 (d measurement is the same) RMS voltage $\pm 0.5 \%$ rdg. $\pm 0.05 \%$ f.s. $(45 \mathrm{~Hz} \sim 66 \mathrm{~Hz})$
*2. Decision function not included.
*3. The reading accuracy of the input unit must combined with the analysis accuracy shown above. When used with a clamp sensor, accuracy and frequency characteristics of the clamp must be added to the analysis accuracy above

Optional Input Unit Specifications improved sensitivity for current ranges. Please ask for detailed specs.

	9600 AC/DC DIRECT INPUT UNIT					9602 AC/DC CLAMP INPUT UNIT		
	Voltage	Curr	rent	Active	power	Voltage	Current	Active power
Measurement range	$\begin{gathered} 6.0000 / 15.000 / 30.000 / \\ 60.000 / 150.00 / 300.00 / \\ 600.00 \mathrm{~V} / 1.0000 \mathrm{kV} \end{gathered}$	$\begin{array}{r} \hline 200.00 / 50 \\ 1.0000 / 2.00 \\ 10.000 / 20.00 \end{array}$	$\begin{aligned} & 00.00 \mathrm{~mA} / \\ & 1000 / 5.0000 / \\ & 00 / 50.000 \mathrm{~A} \end{aligned}$	Depen combinatio and curre	nds on of voltage ent ranges	$\begin{gathered} 6.0000 / 15.000 / 30.000 / \\ 60.000 / 150.00 / 300.00 / \\ 600.00 \mathrm{~V} \end{gathered}$	500.00 mA to 500.00 A (Depends on clamp-on sensor)	Depends on combination of voltage and current ranges
Max.operating input([5Hz)	$1000 \mathrm{Vrms} / 1500 \mathrm{~V}$ peak	65 Arms	00 A peak			$650 \mathrm{Vrms} / 850 \mathrm{Vpeak}$	(Depends on clamp-on sensor)	
Crest factor	Lower of either (measured range $\times 6$)/ measured value or maximum permissible rated peak / measured value					Lower of either (measured range $\times 6$)/ measured value or maximum permissible rated peak/measured value		
Input resistance	$2 \mathrm{M} \Omega \pm 5 \%$	$1 \mathrm{~m} \Omega$	max.			$2 \mathrm{M} \Omega \pm 5 \%$	$200 \mathrm{k} \Omega \pm 5 \%$	
Accuracy	(Accuracy assured at $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F} \pm 9^{\circ} \mathrm{F}\right)$ at 80% R.H., power factor $=1$, sine wave input, in-phase voltage 0 , after DMAG)							
DC	$\pm 0.1 \%$ rdg. $\pm 0.2 \%$ f.s.	\leftarrow		\leftarrow		$\pm 0.1 \% \mathrm{rdg} . \pm 0.2 \% \mathrm{f.s}$.	\leftarrow	\leftarrow
0.5 to 1 Hz	$\pm 0.5 \% \mathrm{rdg} . \pm 0.5 \% \mathrm{f.s}$.	\leftarrow		\leftarrow		$\pm 0.5 \% \mathrm{rdg} . \pm 0.5 \% \mathrm{f.s}$.	\leftarrow	\leftarrow
1 to 10 Hz	$\pm 0.2 \% \mathrm{rdg} . \pm 0.2 \% \mathrm{f.s}$.	\leftarrow		\leftarrow		$\pm 0.2 \% \mathrm{rdg} . \pm 0.2 \% \mathrm{f.s}$.	\leftarrow	\leftarrow
10 to 45 Hz	$\pm 0.1 \% \mathrm{rdg} . \pm 0.2 \%$ f.s.	\leftarrow		\leftarrow		$\pm 0.1 \% \mathrm{rdg} . \pm 0.2 \% \mathrm{f} . \mathrm{s}$.	\leftarrow	\leftarrow
45 to 66 Hz	$\pm 0.1 \% \mathrm{rdg} . \pm 0.1 \% \mathrm{f.s}$.	\leftarrow		\leftarrow		$\pm 0.1 \%$ rdg. $\pm 0.1 \% \mathrm{f.s}$.	\leftarrow	\leftarrow
66 Hz to 10 kHz	$\pm 0.1 \% \mathrm{rdg} . \pm 0.2 \% \mathrm{f.s}$.	\leftarrow		\leftarrow		$\pm 0.1 \% \mathrm{rdg} . \pm 0.2 \% \mathrm{f.s}$.	\leftarrow	\leftarrow
10 k to 50 kHz	$\pm 0.3 \% \mathrm{rdg} . \pm 0.3 \% \mathrm{f.s}$.	\leftarrow		\leftarrow		$\pm 0.5 \% \mathrm{rdg} . \pm 0.5 \% \mathrm{f.s}$.	\leftarrow	\leftarrow
		Less than 5 A	Greater than 5 A	Less than 5 A	Greater than 5 A			
50 k to 100 kHz	$\pm 0.5 \% \mathrm{rdg} . \pm 0.5 \% \mathrm{f.s}$.	$\begin{aligned} & \pm 0.5 \% \text { rdg. } \\ & \pm 0.5 \% \text { f.s. } \end{aligned}$	$\pm 2.5 \%$ f.s.	$\begin{aligned} & \pm 0.5 \% \text { rdg. } \\ & \pm 0.5 \% \text { f.s. } \end{aligned}$	$\pm 5.0 \%$ f.s.	$\pm 0.5 \%$ rdg. $\pm 0.5 \%$ f.s.	\leftarrow	$\pm 0.3 \% \mathrm{rdg} . \pm 0.5 \% \mathrm{f.s}$.
100k to 300 kHz	$\pm 0.5 \%$ rdg. $\pm 0.5 \%$ f.s.	$\begin{aligned} & \pm 0.5 \% \text { rdg. } \\ & \pm 0.5 \% \text { f.s. } \end{aligned}$	$\pm 5 \% \mathrm{f} . \mathrm{s}$.	$\begin{aligned} & \pm 1.0 \% \text { rdg. } \\ & \pm 1.5 \% \mathrm{f} . \mathrm{s} . \end{aligned}$	$\pm 10.0 \%$ f.s.	$\pm 15 \%$ f.s.(up to 200kHz)	\leftarrow	$\pm 30 \%$ f.s.(up to 200 kHz)
300k to 400kHz	$\pm 1.5 \% \mathrm{rdg} . \pm 0.5 \% \mathrm{f.s}$.	$\begin{gathered} \pm 1.0 \% \text { rdg. } \\ \pm 0.5 \% \text { f.s. } \end{gathered}$		$\begin{aligned} & \pm 1.0 \% \text { rdg. } \\ & \pm 2.5 \% \text { f.s. } \end{aligned}$		- Compatible Clamp (Optional)		9709
400k to 500 kHz	$\pm 2.0 \% \mathrm{rdg} . \pm 1.0 \% \mathrm{f.s}$.	$\begin{aligned} & \pm 2.0 \% \text { rdg. } \\ & \pm 1.0 \% \mathrm{f} . \mathrm{s} . \end{aligned}$		$\begin{aligned} & \pm 2.0 \% \text { rdg. } \\ & \pm 2.5 \% \text { f.s. } \end{aligned}$		$9270 \cdot 9271$	9272	9277/9278
500 k to 700 kHz	$\pm 10.0 \% \mathrm{f}$.s.	$\pm 10.0 \% \mathrm{f.s}$.		$\pm 15.0 \% \mathrm{f}$.s.		With the 9602, the ac total accuracy during	acy of the clamp-on	sor is a factor affecting re phase and frequency
700k to 1 MHz	$\pm 15.0 \%$ f.s.	$\pm 15.0 \% \mathrm{f}$.s.		$\pm 30.0 \%$ f.s.				

	9601 AC DIRECT INPUT UNIT		
	Voltage	Current	Active power
Measurement range	60.000/150.00/300.00/6 $00.00 \mathrm{~V} / 1.0000 \mathrm{kV}$	$200.00 / 500.00 \mathrm{~mA} /$ 1.0000/2.0000/5.0000/ 10.000/20.000/50.000 A	Depends on combination of voltage and current ranges
Max.operating inputsput	1000 Vrms 1500 V pak	65Arms/100 A peak	
Crest factor	Lower fo either (measured range $\times 6)$ / measured value or max inium pemisisibl rated peak measured value		
Input resistance	2M $\pm 5 \%$	$1 \mathrm{~m} \Omega$ max.	

Accuracy (Acuracy assurd a 2 \pm (
Assured Accuracy Range for Input Frequency of the 9600

5 to 10 Hz	$\pm 2.5 \%$ f.s.	\leftarrow	\leftarrow
10 to 20 Hz	$\pm 1.0 \%$ f.s.	\leftarrow	\leftarrow
20 to 45 Hz	$\pm 0.1 \%$ rdg. $\pm 0.2 \% \mathrm{f} . \mathrm{s}$.	\leftarrow	\leftarrow
45 to 66 Hz	$\pm 0.1 \%$ rdg. $\pm 0.1 \% \mathrm{f} . \mathrm{s}$.	\leftarrow	\leftarrow
66 Hz to 5 kHz	$\pm 0.1 \%$ rdg. $\pm 0.2 \% \mathrm{f} . \mathrm{s}$.	\leftarrow	\leftarrow
5 k to 10 kHz	$\pm 0.2 \%$ rdg. $\pm 0.4 \% \mathrm{f} . \mathrm{s}$.	\leftarrow	\leftarrow
10 k to 20 kHz	$\pm 1.0 \%$ f.s.	\leftarrow	\leftarrow
20 k to 50 kHz	$\pm 2.5 \%$ f.s.	\leftarrow	\leftarrow
50 k to 100 kHz	$\pm 10.0 \% \mathrm{f} . \mathrm{s}$.	\leftarrow	\leftarrow

Note 1: Assured accuracy ranges for different response settings are as follows: FAST (0.1 sec) to DC and greater than $50 \mathrm{~Hz}, \mathrm{MID}(0.8 \mathrm{sec})$ to DC and greater than 10 Hz , SLOW (5.0 sec) to DC or greater than 0.5 Hz
Note 2: Assured accuracy ranges for combined mode measurement are 10 Hz or greater for the AC mode, and DC only for the $\mathrm{AC}+\mathrm{DC}$ mode or DC mode.
Calculation algorithm (Indicated only for single phase, 2 wire and 3 phase, 3 wire (3V3A).Two additional calculation algorithms can be selected for apparent/reactive power)

1ø2W		Voltage	Current	Active power	Apparent power	Reactive power	Power factor	Phase
		U_{1}	It	P_{1}	$\mathrm{S}_{1}=\mathrm{U}_{1} \times \mathrm{I}_{1}$	$\mathrm{Q}_{1}=\mathrm{S}_{1} \sqrt{\left(\mathrm{UIII}^{2}\right)^{2}-\mathrm{P}_{1}{ }^{2}}$	$\lambda_{1}=\mathrm{S}_{1}\left\|\mathrm{P}_{1} / \mathrm{S}_{1}\right\|$	$\phi_{1}=S_{1} \cos ^{-1}\left\|\lambda_{1}\right\|$
S U M	$\begin{gathered} 3 ø 3 W \\ (3 V 3 A) \end{gathered}$	$\mathrm{U}_{12,23}=\frac{\mathrm{U}_{1}+\mathrm{U}_{2}+\mathrm{U}_{3}}{3}$	$\mathrm{I}_{1223}=\frac{\mathrm{I}+\mathrm{I}_{2}+\mathrm{I}_{3}}{3}$	$\mathrm{P}_{123}=\mathrm{P}_{1}+\mathrm{P}_{2}$	$\begin{aligned} & \begin{array}{l} \mathrm{S} \cdot 2: 3 \mathrm{~s} \\ \frac{\sqrt{3}}{3}\left(\mathrm{U}_{11}+\mathrm{U}_{21}+\mathrm{U}_{3} \mathrm{I}\right) \end{array} \end{aligned}$	$Q_{101}=$	$\lambda_{123}=\mathrm{sul}\left\|\frac{\mathrm{P}_{123}}{\mathrm{~S}_{123}}\right\|$	$\phi_{123}=$ su $\cos ^{-1} \lambda_{123}{ }^{\text {a }}$

[^1]Measurement line : Single phase 2 wire, single phase 3 wire, 3 phase 3 wire (3V3A is possible), 3 phase 4 wire

Measurement item : When using 9600, 9601, 9602 (optional)
Voltage, current, voltage/current peak, effective/reactive/apparent power, power factor, phase, frequency, current/power integration, load rate, efficiency.
When using the 9603 (optional)
Voltage, torque, r/min, frequency, motor output.
When using the 9605 (optional)
Harmonic, waveform, voltage fluctuation / flicker measurement function.
Display indication range : At the lowest range in the DC mode of Models 9600 \& $9602: 0.2 \%$ to 130% At the lowest range in the $\mathrm{AC}+\mathrm{DC}$ mode of Models $9600 \& 9602: 0.5 \%$ to 130% At the 200 mA range of Model $9601: 0.5 \%$ to 130% At 0.1% to 130% of all other ranges.
All range is zero suppressed at less than lower \% value. Valid input range for voltage, current, and power is 0.5% to 110%
Display : 6.4 inch TFT color LCD $(640 \times 480$ dot $)$
Display resolution: 99999 count (except with integration), 9999999 count (with integration)
Rectification method: Switchable between RMS (true root mean square value) and MEAN (average rectified RMS indication). When combined mode DC is selected, its not possible to switch between them.
Display update rate : 8 times/sec
Combined mode : DC, AC + DC, AC (AC only when used in combination with 9601 or $9602+$ AC clamp-on sensor)
Analog response time : FAST (0.1 sec .), MID (0.8 sec .), SLOW (5.0 sec.) (Time required for stabilization to within $\pm 1 \%$ when input is changed from 0% to 90%, or 100% to 10% of range.)
Low pass filter: OFF / 500Hz / 5kHz / 300kHz (-3dB) For 9601, 5 k / 300 kHz not available.
Polaityddection requlation filter: OFF / $200 \mathrm{~Hz}(-3 \mathrm{~dB})$
Analog output : Voltage / current / active power $\mathrm{DC} \pm 5 \mathrm{~V}$ f.s (1000 V range is $\mathrm{DC} \pm 3.333 \mathrm{~V}$ f.s.)
Monitor output : Voltage / current: 1Vrms f.s. (1000 V range is 0.6667 Vrms f.s.)
[Voltage/ Current/ Active power measurement]
Measurement range : See Page 5 specifications for individual input units
[Integration measurement]
Number of measurements: 64 times/sec
Measurement range: 0 to ± 9999999 TAh / TWh (integration time up to 10,000 hours)
[Power factor/ Phase angle measurement]
$\begin{aligned} \text { Measurement range } \quad: & -1.0000(\mathrm{lead}) \text { to } 0.0000 \text { to } 1.0000(\mathrm{lag}) \\ & -180^{\circ}(\mathrm{lead}) \text { to } 0.00^{\circ} \text { to } 180.00^{\circ}(\mathrm{lag})\end{aligned}$

[Frequency measurement]

Number of channels : Max. 3ch (selection of voltage or current for arbitrary channel) Effective input range: 0.5 Hz to 2 MHz
Measurement range : Auto / $50 \mathrm{~Hz} / 500 \mathrm{~Hz} / 50 \mathrm{kHz} / 2 \mathrm{MHz}$

[Wave peak measurement]

Measurement items : Select either voltage or current for each unit (Shows absolute value of max.)
Effective Input Range : Effective value of sine wave is within effective input permissible in the range
[Motor output (Pm) measured] 9603 (optional) external input unit required
Measurement method : Digital calculation from measured voltage or pulse signal Effective when 9603 ch A is torque (any of $\mathrm{N} / \mathrm{m}, \mathrm{mN} / \mathrm{m}, \mathrm{kN} / \mathrm{m}, \mathrm{kgf} / \mathrm{m}$, $\mathrm{kg} / \mathrm{cm}$), and ch B is r / m
Display indication range : 0.1% to 130% of 9603 voltage range (polarity not indicated) Calculation algorithm : Set to required format

[Efficiency measurement]

Calculable factors : Maximum of 3 formats
Calculated items : P for each input unit, Pm when combined with 9603 (Items measured with 9605 not allowed)
[D/A output]
Number of channels : 8ch (12 bit D/A converter polarity +11 bit $)$
Output impedance : $100 \Omega \pm 5 \%$
Output item
Output voltage
Output update rate
Outputs 8 arbitrarily selected items
[FDD]
Compatible media : 3.5 -inch, 2 HD ($1.2 \mathrm{MB} / 1.44 \mathrm{MB}$)
Format : MS-DOS
Functions : Function for saving and loading settings, and saving measured values. Function for outputting measured values. Floppy disk formatting function, file renaming and deleting
[Interface]
GP-IB
Conforms to IEEE-488.1 1987, with reference to IEEE-488.2 1987
RS-232C : Start-stop synchronous, with baud rate of 2400 or 9600 bits/sec
[External Control]
Functions : Integration start / stop control, Integration data reset, External A/D (For display update when power meter display is in hold mode), Manual print control, FD save control
Control signal level : From 0 / 5V logic signal or short//open contact signal

[Other functions]

Scaling : PT/CT ratio Set range 0.0001 to 10000
Averaging : Time average (set interval time, timer time, and average of realtime control time)
Moving average (number of samples: $8 / 16 / 32 / 64$)
Exponential average (attenuation factor: 8/16/32/64)
Multilingual display : Japanese/English screen display switching
Set time (all types) : Interval control time (10 sec to 100 hours) in 10 sec increments (When used in combination with FDD or printer, auto select increments) Timer control time (1 min to 10000 hours) in 1 minute increments Realtime control time, 1 minute increments
[Harmonic / Flicker measurement] 9605 (optional) required
Measurement item: See Page 4 specifications for 9605

Measurement accuracy $\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(13^{\circ} \mathrm{F} \pm 9^{\circ} \mathrm{F}\right.\right.$, Less than 80% rh, warm up time graeter than I hour, sine wave input, power factor $=1$, in-phase volage $\left.=0\right)$

V, A, W : Per accuracy table on page 5
Apparent / reactive : $\pm 1 \mathrm{dgt}$. with respect to calculation from measured value (U, I, P)
power sum value is max. ± 3 dgt.

Integration $\quad: \pm$ ldgt with respect to values calculated from measurements (I, P)
Power factor : Max. ± 3 dgt with respect to values calculated from measurements ($\mathrm{U}, \mathrm{I}, \mathrm{P}$)
Phase angle : Max. ± 3 dgt with respect to values calculated from measurements (U, I, P)
Frequency $\quad: \pm 0.1 \%$ rdg. ± 1 dgt. $\left(0^{\circ} \mathrm{C}\right.$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$, for sine wave input between 10% to 130% of U / I range)
Wave peak : $\pm 1 \%$ (at 0.5 Hz to 1 kHz), $\pm 2 \%$ (at 1 kHz to 10 kHz), $\pm 10 \%$ (at 10 kHz to 100 kHz)

Motor output	1dgt for calculations of each measured value
Efficiency	Max. ± 7 dgt with respect to values calculated from measurements of items substituted into algorithm
Thermal coefficient	Within $\pm 0.03 \% \mathrm{f.s} /{ }^{\circ} \mathrm{C}$
Effect of in-phase	Within $\pm 0.05 \% \mathrm{f.s}$
voltage	(1000 Vrms, $50 / 60 \mathrm{~Hz}$, between shorted voltage input terminals and case)
Effect of power factor	$\pm 0.15 \%$ f.s (power factor $=0$)
Actual time	$\pm 25 \mathrm{ppm} \pm 1 \mathrm{dgt}$. (0 to $40^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right.$ to $41^{\circ} \mathrm{F}$)
D/A output	Display accuracy - $\pm 0.2 \%$ f.s
Analog output	Display accuracy - $\pm 0.2 \%$ f.s
Monitor output	Display accuracy - $\pm 0.2 \%$ f.s (less than 100 kHz) Display accuracy - $\pm 3 \mathrm{~dB}$ (100 k to 1 MHz)
Certifications	Safety
	EN61010-1: 2001
	EMC
	EN61326: 1997+A1: 1998+A2: 2001 class A
	EN61000-3-2: 2000
	EN61000-3-3: 1995+A1: 2001
Power supply	AC100V/120V/200V/230V (switched automatically), $50 / 60 \mathrm{~Hz}$
Maximum rated power	150VA max.
Dimensions, mass	Approx $430 \mathrm{~W} \times 150 \mathrm{H} \times 370 \mathrm{D}$ mm, Approx 13 kg (Approx $16.93^{\prime \prime}(\mathrm{W}) 5.91^{\prime \prime}$ (H)14.57" (D), Approx 458.6 oz.) (in configuration including $960056 \mathrm{ch}, 9603,9604$)
	(Not including projections such as terminals, feet, and handles)
Accessories	Power cord 1, ground adapter (3P to 2P) 1,

■ CLAMP-ON SENSOR(Optional) Specifications $^{\text {(}}$
To use the Clamp-On sensor, be sure to order the factory option $9602 \mathrm{AC} / \mathrm{DC}$ clamp input unit.

Ordering information

3193 POWER HiTESTER (main unit only) 3194 MOTOR / HARMONIC HiTESTER (main unit only)
Measurements cannot be taken with a 3193 POWER HiTESTER and 3194 MOTOR / HARMONIC HiTESTER unit only.
A factory option input unit must be purchased.

	1 ch	2ch	3ch	4ch	5ch	6ch
Pattern A	$1 \emptyset 2 \mathrm{~W}$) $1 \emptyset 2 \mathrm{~W}$	$1 \emptyset 2 \mathrm{~W}$			
Pattern B	$1 \emptyset 3 \mathrm{~W} / 3 \emptyset 3 \mathrm{~W}(\quad \times 2)$		$1 \emptyset 2 \mathrm{~W}$			
Pattern C	$1 \emptyset 3 \mathrm{~W} / 3 \emptyset 3 \mathrm{~W}(\quad \times 2)$		$1 \emptyset 3 \mathrm{~W} / 3 \emptyset 3 \mathrm{~W}(\quad \times 2)$		$1 \emptyset 2 \mathrm{~W}$	$1 \emptyset 2 \mathrm{~W}$
Pattern D	$1 \emptyset 3 \mathrm{~W} / 3 \emptyset 3 \mathrm{~W}$ ($1 ø 3 \mathrm{~W} / 3 \varnothing 3 \mathrm{~W}(\quad \times 2)$		$1 \emptyset 3 \mathrm{~W} / 3$	$1(\times 2)$
Pattern E	$3 \mathrm{~V} 3 \mathrm{~A}(3 \emptyset 3 \mathrm{~W}) / 3 \emptyset 4 \mathrm{~W}$		$\times 3)$	$1 \emptyset 2 \mathrm{~W}$ ($1 \emptyset 2 \mathrm{~W}$	$1 \emptyset 2 \mathrm{~W}$
Pattern F	$3 \mathrm{~V} 3 \mathrm{~A}(3 \emptyset 3 \mathrm{~W}) / 3 \emptyset 4 \mathrm{~W}$		$\times 3$)	$1 \emptyset 3 \mathrm{~W} / 3 \emptyset$	$N(\times 2)$	$1 \emptyset 2 \mathrm{~W}$
Pattern G	$3 \mathrm{~V} 3 \mathrm{~A}(3 \emptyset 3 \mathrm{~W}) / 3 \emptyset 4 \mathrm{~W}$		$\times 3$)	$3 \mathrm{~V} 3 \mathrm{~A} \mathrm{(3} \mathrm{¢}$	W) / $3 \varnothing 4 \mathrm{~W}$	$\times 3)$

Notes on input unit selection

- Use the same input unit for a particular measurement line.
- Install units in succession starting from channel 1.
- For the 9603 or 9603-01, only one unit can be installed.
() :9600, 9601, 9602 can be selected.

When the 9602 is selected, use the optional clamp-on sensor.

Options that can be installed at the factory
(specify at time of order)
9600 AC/DC DIRECT INPUT UNIT
9601 AC DIRECT INPUT UNIT
9602 AC/DC CLAMP INPUT UNIT
9603 EXTERNAL SIGNAL INPUT UNIT (3193 only)
9603-01 EXTERNAL SIGNAL INPUT UNIT (3194 only)
9604 PRINTER UNIT
9605 HARMONIC / FLICKER MEASUREMENTS UNIT (3193 only)
*The voltage cable is not supplied. Contact your dealer when it is necessary to use the clip type leads.

Options

* 9270 CLAMP ON SENSOR (20A AC)
* 9271 CLAMP ON SENSOR (200A AC)
* 9272 CLAMP ON SENSOR (20/200A AC)

9277 UNIVERSAL CLAMP ON CT (20A AC/DC)
9278 UNIVERSAL CLAMP ON CT (200A AC/DC)

* 9279 UNIVERSAL CLAMP ON CT (500A AC/DC)

9709 AC/DC CURRENT SENSOR (500A AC/DC)

* 9290 CLAMP ON ADAPTER (1500A AC, ratio10:1)

9232 RECORDING PAPER ($10 \mathrm{~m}, 10$ roll, For 9604)
*No CE marking

HIOKI E.E. CORPORATION

HEAD OFFICE :

81 Koizumi, Ueda, Nagano, 386-1192, Japan TEL + 81-268-28-0562 / FAX +81-268-28-0568 E-mail: os-com@hioki.co.jp
HIOKI USA CORPORATION :
6 Corporate Drive, Cranbury, NJ 08512 USA
TEL +1-609-409-9109 / FAX +1-609-409-9108
E-mail: hioki@ hiokiusa.com

[^0]: Note 1: Analysis order accuracy is restricted to the frequency in brackets.
 Note 2: With PLL synchronization in the range of 10 to 35 Hz , an anti-aliasing filter of about 15 kHz is used, and with PLL synchronization in the range of 35 Hz to 4.5 kHz , an anti-aliasing filter of about 120 kHz is used.

[^1]: Note 1: The above calculation algorithm is for a single phase, 2 wire input to ch 1 , and 3 phase, 3 wire input to ch $1 / 2 / 3$ (3 voltage, 3 current).
 Note 2: The " s " before each power factor or phase operation indicates the lead or lag of current phase in relation to voltage. The "-" sign means current phase leads voltage and when there is no symbol, it lags. "su" is "-" when the sum of reactive power is negative and " + " (but unsigned) when it is positive.

